
1 

 
PowrSym4  

 
A Presentation by 

 
 
 
 

February, 2012 
 

Operation 
Simulation 
Associates, Inc. 



2 

Presentation Contents 
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PowrSym Background 
 PowrSym1 developed for TVA in 1970’s 

 Placed in public domain 
 Foundation for PowrSym Plus (also called P+) 

 PowrSym2 developed by OSA in 1980’s 
 Foundation for PROSYM 

 PowrSym3 developed by OSA mid 1990’s 
 Enhancement has been on-going 
 Addition of NTC multi-area flow logic 
 Unique features for modeling wind power, cogeneration and energy 

storage 
 PowrSym4 Nodal released in 2010 

 PTDF multi-area flow logic (Zonal or Nodal by Bus) 
 Interface to transmission models 
 Enhancements for multi-area adequacy studies using Monte Carlo 

uncertainty algorithm. 
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PowrSym General Overview  

 Chronological Simulation 
 Energy Storage 
 Unit Commitment (Dynamic, Multi-state) 
 Monte Carlo Uncertainty, Probabilistic 
 Combined Heat & Power 
 Blast Furnace & Steel Converter Gasses 
 Multi-Area (LTC or PTDF) 
 Zonal LMP (Locational Marginal Pricing) 
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PowrSym Overview Continued 

 Wind & Solar Energy 
 Maintenance Scheduling 
 Fuel Contracts 
 Load Flow Interface by TenneT & T.U. Delft 
 Zonal & Nodal LMP with PTDF Flow Scheduling 
 Computation time in range of seconds for 

detailed week simulation to a couple of hours for 
an annual simulation of a multi-region grid. 
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PowrSym3 - Features 
 Input & Output are Keyword driven records 

 Easy to manipulate by database or Excel 
 Multiple Areas Simulation  
 Chronological, by hours or minutes (time step 

user definable) 
 Combination of heuristic & dynamic commit 
 Equal incremental cost dispatch 
 Combined heat and power optimization (not as 

constrained units) 
 Hydro, Pumped Hydro, Wind Power 
 Fuel Contracts and Limitations 
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Marginal Costs 

 Hourly or minutes 
 Market Depth Curve 
 Incremental/Decremental 
 As viewed by each area 
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Cost Model 
 PowrSym3 is a least cost  generation 

model 
 Marginal costs are: 
Last unit dispatched 
Purchase power 
Unserved energy cost 
Dump power cost 
Vary by area  

 Wheeling costs 
 Transmission constraints 
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Maintenance 

Maintenance Scheduler Module: 
 Internal model with as objective functions: 
Levelized LOLP 
Least Cost 

 Allows combination of objective functions 
 Allows External schedule 
 Will schedule in mixed mode 
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Maintenance Evaluator (PME) 

 Designed to evaluate maintenance options 
under uncertainty 

 A Monte Carlo risk model works through a 
wide range of uncertainties producing a 
probabilistic evaluation of maintenance 
schedules and options 

 Not just a single “expected” result but also 
a graphical depiction of the range of 
possible outcomes  
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Probabilistic Model 
 Monte Carlo iterative model 
Unit outages and deratings 
Network outages or deratings 
Wind & Solar variance 
Hydro variance 
Load variance 

 Average results 
 Range of results across the draws 
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Sample Monte Carlo Analysis 

 The following graph shows resulting 
production costs for a one week extension 
of an outage. The y axis is percent chance 
of falling in that bracket and the x axis is 
system production cost increase in 
$100,000 increments.  
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Monte Carlo Analysis 
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Monte Carlo Analysis 

 A simple computation would likely yield the 
$500,000 result, but the risk analysis 
yields an expected cost of $742,000 and 
some probability that costs could exceed 
$2 million.  

 Similar graphs can be produced for 
changes in other outputs such as marginal 
costs, fuel consumption and emissions. 
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Reliability model 

 Standard LOLP calculation 
 Does not include wind/solar variation 
 Does not include all unit operating constraints 
 Does not include network constraints 

 LOLE calculation 
 Probability and depth 
 Includes load, wind and solar variation 
 Includes unit operating constraints 
 Includes network constraints 
 Results from Monte Carlo draws 
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Reserves Model 

 Spinning, operating, standby, turndown 
 System, Control Area, Area 
 Units 
Standard, quickstart, nonfirm 
Min and Max contribution 
Ramping limits 
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Unit Commitment 

 Heuristic, DP, or combination 
 Minimum up/down times 
 Start costs 
 Multi-state stations 
 Pumped and Conventional Hydro 
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Unit Dispatch 

 Economic Observing Constraints 
 Combined Heat and Power Units 
 Multi-Area including transmission 

constraints 
 Equal incremental cost 
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Multi Area 

 The system may be divided into areas 
 Areas may be grouped into control areas 
 Adapted, robust spinning and operating 

reserve model (including turn-down 
reserves) 
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Multi Area 

Areas are connected by links with 
capacity, loses, and transmission 
charges parameters 

 Link parameters may vary by direction of 
flow and by time of day. 

 Transfer Capabilities (NTC & PTDF) 
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Multi Area 
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Wind Power 
 Wind is treated as a resource 
Hourly Generation derived from Wind Patterns 

(not “Negative Load” approach) 
 No practical Limit on Number of Wind Farms 
 Multiple wind regimes linked to multiple wind 

farms. 
 Each wind farm has its own conversion 

equations. 
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Wind Power 

 Uncertainty on Wind Power Generation 
(Monte Carlo) 

 Different options for the curtailment 
(inflexible to flexible)  

 Option to use wind power prediction 
models and wind prediction accuracy 
functions in the unit commitment 
 Prediction on hourly basis (rolling horizon)  
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Wind Power 
Case Study – The Netherlands 

Source: 
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Wind Power 
Case Study – The Netherlands 

Impact of Wind Generation on HOB’s production 
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Wind Power 
Case Study – The Netherlands 

Measures to improve wind deployment
(source: TenneT analyses)
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Cogeneration (CHP) 
 Unique methodology and simulation 

technique 
Gives a direct lowest cost solution (not 

iterative) for serving the combination of 
electric and heat loads 

Heat areas with unique hourly heat loads, 
served by unique combinations of CHP units, 
heat-only boilers or heat storage units 

Heat networks with capacity limits and losses 
Two concomitant heat extractions possible 

(low and high temperature) 
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Emissions Dispatch 
 Multiple Effluents 
 SO2 / NOX / CO2 / OTHERS 
 PowrSym3 reports the emission levels  
 Operations may be influenced by prices 

attached to various effluents (option) 
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Fuel Contracts and Limitations 
 Fuels may be input as a station parameter 

or fuels may be input as their own entity 
 In the second case:  
Fuels may be shared by multiple stations 
A station may have access to multiple fuels 
Station capacities and efficiencies may vary 

by fuel selection  
Fuels may be blended  
Fuels may have varying transportation costs 

to the various stations 
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 Energy Limited Fuel Dispatch (ELF) 
Multiple fuel contracts with different prices, 

reliability and limits 
Quantity and prices may vary by hour 
 Inventories, storage rate limits 

 Each fuel delivery, inventory, or 
transportation constraint can be 
probabilistically derated 

 Integrated with Monte-Carlo simulation 

Fuel Contracts and Limitations 
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Fuel Contracts and Limitations 
 Use of residual Blast Furnace Gas (BFG) 

and Oxygen Converter Gas (OCG) 
Low calorific value 
Fluctuating quantities 
Support firing of natural gas (NG) needed 
Automatic correction of unit efficiency and 

capacity, function of the amount of BFG 
burned 

Different prices for BFG, OCG and NG 
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Energy Storage 

 Time related constraints are a major factor in the 
pump hydro dispatch: 
 Turn-down limits on large thermal power plants may 

create low cost pumping opportunities even in high 
load periods 

 Cogeneration and power exchange contracts may 
have time-of-day provisions not following always 
system load swings 

 Availability of variable sources such as wind and 
solar. 
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Energy Storage 
 Such constraints often cause pumped 

hydro operation to deviate from the 
intuitive schedule of pumping during 
lowest load hours and generating during 
highest load hours 

 Solved by VALUE OF HOURLY ENERGY, 
not just load leveling (valley filling peak 
shaving technique) 
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Energy Storage 
Value of Energy Method: 
Places a cents/kWh value on the energy 

in storage, defined relative to pumping 
mode 
When marginal cost of other resources 

< the pumping energy value, the plant 
would be operated in pumping mode 
(subject to storage availability) 
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Energy Storage 

Value of Energy Method (contd.): 
Generating value is the pumping value 

divided by plant net efficiency + plant 
variable O&M cost 
When system marginal cost > 

generating value of energy,  the plant is 
operated in generating mode 
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Energy Storage 
 Value of Energy Method (contd.): 
A reservoir empty condition is not allowed 

during a period of high marginal cost. This 
requirement places a lower bound on the 
pumped hydro energy value 

An additional lower bound is defined by the 
requirement that sufficient pumping energy 
must be available to replace generation 
energy plus efficiency losses over the study 
horizon 
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Energy Storage 

Value of Energy Method (contd.): 
The value of energy which results in 

optimal pumped hydro scheduling can 
now be defined as the higher of these 
two lower bounds.  
The first bound will control for projects 

with small reservoirs and the second 
bound for larger reservoirs 
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Energy Storage and Adequacy 

 For speeding-up the calculations for large 
Monte Carlo adequacy studies, a 
simplified, quick pumped hydro scheduler 
has been developed. 
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Energy Storage 
 Low head pumped storage systems 

high variation of the available capacity 
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Energy Storage 
 Low head pumped storage systems 

high variation of efficiency 
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Hydro Logic 
 

 Hydro may be modeled by a load-
leveling method, including the variation in 
wind/solar generation. 

 Alternatively hydro (or a portion of the 
hydro) can be modeled by the value of 
energy method 

 Forward of information (reservoir levels, 
spillage) from week to week  
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DP Algorithm 
 
 Models for multi-mode combined cycle 

units (also CHP) in different states (GT, 
GT+ST, ST) and, of course, single-state 
units  

 Three states plus off-line, may be 
extended to additional states  

 Modeling of state transitions, up and 
down (transition times, transition cost)  

 Uses DP logic to optimize state selection  
 Important option because of increasing 

number of Combined Cycle units  
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Advantages of PowrSym3 
 
 Combination of LP, heuristics and DP 

makes the model very accurate, while 
maintaining a very high computational 
speed    

 This delivers operation quality answers, 
the model being also in operation in 
dispatch centers 
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Advantages of PowrSym3 
 
 The accuracy, in combination with the 

high speed allow for adequate security 
analysis of very large systems, while 
considering chronological and correlation 
aspects within market simulation.  
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PowrSym4 Enhancements 
 Combining market simulation with load 

flow calculations: 
 Increased uncertainty of load flows due to 

increased liberalization and large-scale 
integration of RES (wind) 

Necessity to combine Unit Commitment & 
Economic Dispatch (UC-ED) with load flow 
simulations 
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PowrSym4 Enhancements 
 Results from UC-ED, defined with 

PowrSym4, form input for load flow 
models (like PSS™E or others) 

 PowrSym4 accepts NTC or PTDF factors 
from the load flow models 
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PowrSym4 Enhancements 
 Results from all daily load flows of a year 

give  a good approximation of all possible 
combinations between load and 
generation throughout that year 

 Technique applicable for use in 
combination with any load flow model  
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Power Transmission Distribution 
Factors (PTDFs) 
 The PTDF is the fraction of the amount of 

a transaction from one node (or zone) to a 
defined central node that flows over a 
given transmission line. 

 Dynamic PTDF factors are relative to a 
given flow balance.  
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PTDF Factors 

 The PTDF array can be very large, in 
theory a value for every branch relative to 
each node. 

 In practice many of the array values are 
near zero and only the significant values 
are required for input. 
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PTDF Flow Calculations 

 Flows between specific nodes are 
computed by: 
Scheduling a flow from the sending node to 

the central node. 
Scheduling a negative flow from the central 

node to the receiving node. 
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PTDF Flow Optimization 

 The PTDF flow logic is integral to the 
PowrSym commit and dispatch logic. 

 Flows are scheduling so as to find the 
least cost result with minimal un-served 
energy. 
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Locational Marginal Price (LMP) 
Forecasting Using PTDF 
 PowrSym4 produces hourly LMP output 

for each zone in zonal studies and each 
node in nodal studies. 

 The LMP output can be expressed as a 
range in Monte Carlo analyses. 
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Current Development Projects 

 Improved method for use of multiple processors 
in large Monte Carlo studies. 

 A faster PTDF algorithm. 
 Additional features related to natural gas storage 

reservoirs. 
 FBA-MC (Flow Based Allocation – Market 

Coupling): zonal PTDFs will be used for linking 
commercial transactions to the physical structure 
of the grid. 
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Current Development Projects 

 Allocation of social benefits per region or 
stakeholder group: 
Social welfare (benefits – costs) 
PowrSym calculates the benefits for the entire 

system (market surplus = reduction of 
production costs) 

Assuming that electricity is sold at marginal 
cost in each node  allocation per region or 
stakeholder group 
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